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Abstract. Using the Szulkin’s variant of Mountain Pass Theorem, we prove the existence of
nontrivial orbits with prescribed period for autonomous Hamiltonian systems in infinite dimen-
sional Hilbert spaces.
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1. Introduction

In Mawhin and Willem (1989), the authors combining the dual least action principle
and the classical variant of mountain pass theorem, have proved the existence of
nontrivial periodic solutions for the autonomous Hamiltonian system

~Ju(t) 1 =H(u(t)) 5 0 (1)

1 2N 2N 2Nwhere H [ C (R , R) is strictly convex, H(0) 5 0, =H(0) 5 0 and J : R → R is
symplectic matrix. More specifically, Jean Mawhin and Michel Willem have proved
the following result:

THEOREM (see Mawhin and Willem (1989), Theorem 4.11). If there exists q . 2,
2Na . 0, such that, for every u [ R , one has

qH(u) < k=H(u), ul

and

qH(u) < aiui ,

then, for each T . 0, (1) has a nontrivial T-periodic solution.

This theorem was first proved by Rabinowitz (1978) by a direct minimax

* This paper is dedicated to the memory of Professor P.D. Panagiotopoulos.
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approach and without the convexity assumption. The proof given in Mawhin and
Willem (1989) is due to Ekeland (1979).

In this paper we will consider the following problem

!u(t) 5=H(u(t)) , (2)

2Atwhere A : D(A) , X → X and 2A generates a C -semigroup e on the infinite0
2ATdimensional Hilbert space X and e is compact and

~q A*p 2 p˜ ˜! : D(! ) , X → X , ! 5 . (3)S D S D~p Aq 1 q

If we will introduce the operator

2 2˜ ˜ ˜ ˜! : D(! ) , L (0, T; X ) → L (0, T; X ) (4)

where

2 2˜ ˜ ˜~D(! ) 5 hu [ L (0, T; X ) : u(0) 5 u(T ), u [ L (0, T; X )j

defined by

˜(!u)(t) 5 !u(t) , for all t [ [0, T ] ,

follows that
˜ ˜– ! is linear, densely defined closed operator with closed range R(! ) (see Barbu

(1996));
21 2˜ ˜ ˜– ! : R(! ) → L (0, T; X ) is linear and compact (see Barbu (1996)).

1 ˜We will also assume that H [ C (X, R) is uniformly convex such that H(u ) 5 0,X̃

=H(u ) 5u and exists˜ ˜X X
˜a . 0 such that, for every u [ X, one has

2H(u) < k=H(u), ul (5)

and

12 21 ]H(u) < aiui , i! i , . (6)X̃ 2a

In this case, we can prove that the corresponding dual action defined by
T 1 21˜]w(v) 5E H*(v(t)) dt 2 k! v, vl 2 ˜L (0,T ;X )20

˜is differentiable on R(! ). Because we do not know if the dual action is continuously
differentiable, we cannot apply the classical variant of mountain pass theorem for
obtaining a critical point for w. This is the reason for which we will write

T 21 T1
]w 5 w 1 w , where w (v) 5 2 e k! v(t), v(t)l dt, w (v) 5 e H*(v(t)) dt, and˜1 2 1 0 X 2 02

we will prove that w is continuously differentiable and w is convex and1 2

differentiable. Using the Szulkin’s variant of mountain pass theorem (see Szulkin
(1986)), we find the critical point for w.
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2. The main result

˜THEOREM 1. Let X be an infinite dimensional Hilbert space, X 5 X 3 X, and
1 ˜H [ C (X, R) is uniformly convex such that H(u ) 5 0, =H(u ) 5u . If there exists˜ ˜ ˜X X X

˜a . 0, such that, for every u [ X, one has

2H(u) < k=H(u), ul (7)

and

12 21 ]H(u) < aiui , i! i , (8)X̃ 2a

then, for each T . 0

!u(t) 5=H(u(t)) (9)

has a nontrivial T-periodic solution.

Proving Theorem 1, requires several definitions and preliminary results.

3. The preliminary results

We introduce some functional spaces. Let [0, T ] be a fixed real interval (0 , T , `)
˜and let X be a Hilbert space. We introduce the Hilbert space X 5 X 3 X with the

natural inner product

˜ku, vl 5 kq , q l 1 k p , p l , ;u 5 (q , p ) , v 5 ( p , p ) [ X ,X̃ 1 2 X 1 2 X 1 1 1 2

p ˜and we denote by L (0, T; X ) the space of all (classes of) strongly measurable
T p˜functions u : [0, T ] → X such that e iu(t)i dt , ` for 1 < p , `. We denote˜0 X

1, p1, p p˜ ˜ ˜ ˜ ˜~by W (X ) 5 hu : [0, T ] → X : u, u [ L (0, T; X )j and by W (X ) 5 hu [T T
1, p T 1, p˜ ˜W (X ) : e u(t) dt 5u j. The norm over W (X ) is defined by˜T 0 X T

T T 1
]p p p~iui 5 E iu(t)i dt 1E iu(t)i dt1, p S D˜ ˜W X XT 0 0

and

T 1
]p piui 5 E iu(t)i dt , iui 5 max iu(t)i .p S D˜ ˜L X ` X

t[[0,T ]0

It is necessary to recall the infinite dimensional variants of some very well known
˘inequalities (for proofs and details see Dinca and Paşca):

1 1
] ]1, p 2 1 1˜ p q ] ](a) If u [ W (X ) then iui < (T 1 T )iui where 1 5 1.1, pT ` W p qT11, p ]˜ ˜ q ~(b) If u [ W (X ) then iui < T iu i (Sobolev inequality).pT ` L
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3.1. FENCHEL TRANSFORM AND THE DIFFERENTIABILITY OF CONVEX FUNCTIONALS

We recall the basic tool about the Fenchel transform and the differentiability of
convex functionals. Let X be a real Banach space and X* its dual.

DEFINITION 1. Let F : X → (2`, `] be a proper functional. Then
F* : X* → (2`, `] given by

F*(x*) 5sup hkx*, xl 2 F(x)j , ;x* [ X*X*,X
x[X

is called the Fenchel transform of F.

DEFINITION 2. A functional F : X → (2`, `] is called uniformly convex if

2 2lF(x) 1 (1 2 l)F( y) 2 F(lx 1 (1 2 l)y) > g l(1 2 l)ix 2 yi , (10)X

2
;x, y [ dom F, ;l [ [0, 1] and there g . 0.

DEFINITION 3. Given the proper convex functional F : X → (2`, `], the subdif-
X*ferential of such a function is the mapping F : X → 2 given by

5 ; x [⁄ dom F
F(x) 5Hhx* [ X* : F( y) 2 F(x) > kx*, y 2 xl , ;y [ Xj ; x [ dom F .X*,X

PROPOSITION 1. If F : X → (2`, `] is proper and convex functional, then it
follows:

1) x* [ F(x)⇔F(x) 1 F(x*) 5 kx*, xlX*,X

2) x* [ F(x) ⇒ px [ F*(x*)
3) Moreover, if F is lower semicontinuous then [x* [ F(x)⇔px [ F*(x*)].

( We denoted with p the canonical injection of X in X**.)

PROPOSITION 2. Let F : X → (2`, `] be a convex, proper and lower semicon-
tinuous such that

a q]2b < F(x) < ixi 1 gXq

with a . 0, q . 1, b > 0, g > 0. Then, if x* [ F(x) it follows:

p 1]2 p
q ]a ix*i < kx*, xl 1 b 1 gX* X*,Xp

and
p
] q21
qix*i < h pa (ixi 1 b 1 g ) 1 1j .X* X

PROPOSITION 3. Let X be a reflexive Banach space, F : X → (2`, `] is proper,
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F(x)
]lower semicontinuous and uniformly convex such that → ` when ixi → `.XixiX1Then F* [ C (X*, R) and F* is bounded to below.

PROPOSITION 4. If F : X → R is convex and differentiable at x, then F(x) 5

h=F(x)j.

˘The proofs of the following results is given in Dinca and Paşca. When X is finite
dimensional the proofs was given in Mawhin and Willem (1989).

THEOREM 2. Let X be a Banach space. Let L : [0, T ] 3 X → R, (t, x)°L(t, x) be
measurable in t for each x [ X and continuously differentiable in x for almost every

1t [ [0, T ]. If there exists a [ C(R , R ), b [ L (0, T; R ) such that, for a.e.1 1 1

t [ [0, T ] and every x [ X, one has

uL(t, x)u < a(ixi )b(t)X

iD L(t, x)i < a(ixi )b(t)x X

1 Tthen the functional w : H (X) → R defined by w(u) 5 e L(t, u(t)) dt is differentiableT 0
1on H (X) andT

T

kw9(u), vl 5E kD L(t, u(t)), v(t)l dt .x X*,X
0

˜ ˜THEOREM 3. Let X be a Hilbert space, X 5 X 3 X, and H : [0, T ] 3 X → R such
˜that (t, u)°H(t, u) be measurable in t for each u [ X, uniformly convex and

continuously differentiable in u for almost every t [ [0, T ]. Let A : D(A) , X → X an
operator like in Introduction. Assume that there exists a . 0, d . 0, b, g [

2 ˜L (0, T; R ), such that, for all u [ X and a.e. t [ [0, T ], one has1

2 2iui iui˜ ˜X X]] ]]d 2 b(t) < H(t, u) < a 1 g(t) .2 2
T 211

]Then, the dual action w(v) 5 e [H*(t, v(t)) 2 k! v(t), v(t)l ] dt is differentiable˜0 X2
˜ ˜on R(! ) and, if v [ R(! ) is a critical point of w, function u defined by

u(t) 5=H*(t, v(t)) satisfies

!u(t) 5=H(t, u(t)) , u(0) 5 u(T ) .

3.2. THE SZULKIN’S RESULT

In Szulkin (1986), the author introduces the following framework:
Let X be a real Banach space and I a function on X satisfying the following

hypothesis:
1(H) I 5 F 1 c, where F [ C (X, R) and c : X → (2`, `] is convex, proper and

lower semicontinuous.
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DEFINITION 4. A point u [ X is said to be a critical point of I if u [ dom c and if
it satisfies the inequality

kF9(u), v 2 ul 1 c(v) 2 c(u) > 0 , ;v [ X .X*,X

21A number c [ R such that I (c) contains a critical point will be called a critical
value.

DEFINITION 5. We say that I satisfies the Palais-Smale condition (in short (PS)) if
each sequence (u ) in X such that I (u ) → c [ R andn n

kF9(u ), v 2 u l 1 c(v) 2 c(u ) > kz , v 2 u l ;v [ X ,n n X*,X n n n X*,X

where z →u , possesses a convergent subsequence.n X*

Under the conditions described above, Szulkin prove (see Szulkin (1986),
Theorem 3.2):

THEOREM 4 (Mountain Pass Theorem). Suppose that I : X → (2`, `] is a function
satisfying (H), (PS) and

i) I(u ) 5 0 and there exist d, r . 0 such that I > d,X uBr
¯ii) I(e) < 0 for some e [⁄ B .r

Then I has a critical value c > d which may be characterized by

c 5 inf sup I( f(t)) ,
f [G t[[0,1]

where G 5 h f [ C([0, 1], X) : f(0) 5u , f(1) 5 ej.X

4. Proof of Theorem 1

The proof of Theorem 1 will be a combination of the dual least action principle and
the mountain pass theorem, and requires several preliminary lemmas. We will follow
the ideas from finite dimensional case studied in Mawhin and Willem (1989).

LEMMA 1. If

M 5 sup H(u) , m 5 inf H(u) (11)
iui 51˜iui 51 XX̃

then
2 2iui < 1 ⇒ H(u) < Miui , iui > 1 ⇒ H(u) > miui . (12)˜ ˜ ˜ ˜X X X H

Proof. First of all, we will see that M , ` and m . 0. From (8) follow that for
iui 5 1 we have H(u) < a and therefore M 5 sup H(u) < a , `. Now we willX̃ iui 51X̃

prove that m . 0.
From Definition 2 we have
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2 2lH(u) 1 (1 2 l)H(v) 2 H(lu 1 (1 2 l)v) > l(1 2 l)g iu 2 viX̃

˜ ˜;u, v [ X, ;l [ (0, 1). For v 5u and u [ X with iui 5 1, because H(u ) 5 0˜ ˜ ˜X X X

follow

H(lu) 2]]H(u) 2 > (1 2 l)g . (13)
l

1 ˜Since H [ C (X, R) and =H(u ) 5u , we have˜ ˜X X

H(v 1 h) 2 H(v) 2 k=H(v), hl
]]]]]]]]]lim 5 0 . (14)

ih u→0 ihi

If we take in (14) h 5 lu, iui 5 1, l . 0, l → 0, v 5u we obtain˜ ˜X X

H(lu)
]]lim 5 0 .

ll→0,l.0

2Therefore, from (13) H(u) > g . 0, ;u, iui 5 1 which implies inf H(u) 5X̃ iui 51X̃

m . 0.
˜For will prove (12), we define f : R → R, f(s) 5 H(sv) for some fixed v [ X.

2Assumption (7) implies that sf 9(s) > 2f(s). Thus, if s > 1, f(s) > s f(1) i.e. H(sv) >
2s H(v). If iui < 1 this impliesX̃

u 22]]H > iui H(u)X̃S DiuiX̃

and if iui > 1, this impliesX̃

u u2]] ]]H(u) 5 H iui > iui H . h˜ ˜X XS D S Diui iui˜ ˜X X

˜LEMMA 2. The function H* is continuously differentiable on X and, if

1
]m* 5 inf H*(v) , M* 5 sup H*(v) , a* 5 4aivi 51X̃ ivi 51X̃

we have m* . 0 and

2H*(v) > k=H*(v), vl (15)

2ivi < 1 ⇒ H*(v) > m*ivi (16)˜ ˜X X

2ivi > 1 ⇒ H*(v) < M*ivi (17)˜ ˜X X

2H*(v) > a*ivi (18)X̃

˜for all v [ X.
Proof. First of all, we will prove that m* . 0 and M* , `. Relation (8) implies

relation (18), and therefore m* . 0.
By contradiction we suppose that M* 5 sup H*(v) 5 `. It follows that thereivi 51X̃

exists a sequence (v ), iv i 5 1 such that H*(v ) → `. Since H is uniformly convex˜n n X n
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H(u)
]and, by (12), such that → ` as iui → `, Proposition 3 implies that H* [X̃uui X̃1 ˜ ˜C (X, R). Now it follows from Proposition 1 and Proposition 4 that for fixed v [ X

˜exists a unique u [ X such that

v 5=H(u)⇔u 5=H*(v)⇔H*(v) 5 kv, ul 2 H(u) . (19)

˜Therefore exist a sequence (u ) [ X such thatn

H*(v ) 5 kv , u l 2 H(u ) , iv i 5 1 .˜n n n n n X

Follows that

H*(v ) < iu i 2 H(u )˜n n X n

and therefore

iu i 2 H(u ) → ` . (20)˜n X n

1
]From uniformly convexity of H, for l 5 , v 5u we haveX̃2

u1 n2 2] ]H(u ) > g iu i 1 2HS D˜n n H2 2

which implies

u1 n2 2] ]iu i 2 H(u ) < iu i 2 g iu i 2 2H . (21)S D˜ ˜ ˜n X n n X n X2 2

From (20) and (21) result

un]H → 2` . (22)S D2

Relation (22) is in contradiction with the fact that in our assumptions, the
Hamiltonian H is bounded to below.

From (19), assumption (7) implies that

1 1
] ]S DH*(v) 5 kv, ul 2 H(u) > 1 2 kv, ul 5 kv, =H*(v)l .2 2

Like in the proof of Lemma 1, (15) implies (16) and (17). h

REMARK 1. We know that the function H* is convex but we do not know that H*
is uniformly convex. In the proof of Lemma 2 it is not necessary that H* be
uniformly convex.

REMARK 2. If we denote sup H*(v) 5 M* and proceed like in the proof ofivi <1 1X̃ 2Lemma 2 it follows that M* , `. Since, by (17), H*(v) < max(M* 1 M*)(1 1 ivi )˜1 1 X
˜for all v [ X. Proposition 2 and Theorem 2 imply that the dual action defined by

T 1 21]F Gw(v) 5E H*(v(t)) 2 k! v(t), v(t)l dtX̃20
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˜is differentiable on R(! ).

˜LEMMA 3. There exists C . 0 such that, for each v [ R(! ) one has

T
21 2E k! v(t), v(t)l dt < Civi .2˜ ˜X L (0,T ;X )

0

Proof. Obviously

T T
21 21 2 2E k! v(t), v(t)l dt <E i! i ivi dt 5 Civi . h2˜ ˜ ˜X X L (0,T ;X )

0 0

2˜ ˜LEMMA 4. Every sequence (v ) in R(! ) , L (0, T; X ) such that (w(v )) is boundedj j

and w9(v ) →u contains a convergent subsequence.2 ˜j (L (0,T ;X ))*

Proof. Theorem 2 imply that the dual action w is differentiable and

21˜kw9(v), wl 5 k=H*(v( ? )) 2 ! v, wl .2 ˜L (0,T ;X )

The Riesz representation theorem imply the existence of a sequence ( f ) inj
2 ˜L (0, T; X ) such that i f i → 0 as j → ` and2j L

21˜=H*(v ( ? )) 2 ! v 5 f , k f , wl →u (23)2 2˜ ˜j j j j L (0,T ;X ) (L (0,T ;X ))*

˜for all w [ R(! ). Using Lemma 3, (8) and (18) we obtain

T T1 21]w(v ) 5E H*(v (t)) dt 2 E k! v (t), v (t)l dt˜j j j j X20 0

1 1 21 2] ]S D> 2 i! i iv i .2 ˜j L (0,T ;X )2 2a
2 ˜Because (w(v )) is bounded it follows (v ) is bounded in L (0, T; X ). Going ifj j

21˜necessary to a subsequence, we can assume because ! is compact, that v ©v inj
21 212 2˜ ˜ ˜ ˜L (0, T; X ), ! v → w in L (0, T; X ). But ! is selfadjoint, therefore weaklyj

21˜closed, and we have w 5 ! v. From (23) we have

21 21˜ ˜=H*(v ( ? )) 5 ! v 1 f → ! v ,j j j

and by duality

21˜v 5=H(! v ( ? ) 1 f ( ? )) . (24)j j j

Now, assumption (8) and Proposition 2 imply that =H maps continuously
2 2˜ ˜L (0, T; X ) into L (0, T; X ), so that

21 21˜ ˜v 5=H(! v ( ? ) 1 f ( ? )) → =H(! v) . hj j j

Proof of Theorem 1
1) Now we can write the dual action on the following form:
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w 5 w 1 w , where1 2

T T1 21]w (v) 5 2 E k! v(t), v(t)l dt, w (v) 5E H*(v(t)) dt˜1 X 22 0 0

with w differentiable and w convex and differentiable (see Remark 2). By Theorem1 2

2 it follows

T
21kw9(v), wl 5 2E k! v(t), w(t)l dt .1

0

21¨By Holder’s inequality it follows ukw9(v), wlu < i! i ivi iwi which implies the2 21 L L

continuity of w9 and hence w satisfies (H). Using Proposition 4, it is obvious that,1

for w, the definition of critical point (Definition 4) as well as the (PS) condition
(Definition 5) coincide with the usual ones. We shall apply Theorem 4 to w. By
Lemma 4, w satisfies the (PS) condition for every c [ R.

2) Since

T 1 21]F Gw(v) >E H*(v(t)) 2 k! v(t), v(t)l ,X̃20

1 12 21] ]H*(v) > ivi and i! i ,X̃4a 2a

we obtain

1 1 21 2] ]S Dw(v) . 2 i! i ivi . x(u ) 5 02 2˜ ˜L (0,T ;X ) L (0,T ;X )2 2a

if 0 , ivi , r2 ˜L (0,T ;X )

w(v) . d . 0 if ivi 5 r .2 ˜L (0,T ;X )

3) Let

2kp 2kp
˜ ˜]] ]]S D S Dv (t) 5 !w (t) where w (t) 5 cos t c 2 sin t Jck k k T T

]1 Î˜ ]and k [ Z, c 5 (c, c), c [ D(A), ici 5 . Then, iw i 5 T for all k [ Z2] ˜X k L (0,T ;X )Î2

and
T

w(v ) 5E H*(v (t)) dt 1 kp .k k
0

By

2H*(v) < max(M*, M*)(1 1 ivi ) ,1

we obtain

w(v ) < max(M*, M*)T(1 1 i! i) 1 kp .k 1

Obviously we can choose k [ Z such that w(v ) , 0 and such that iv i . r.2 ˜k k L (0,T ;X )
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4) Theorem 4 implies the existence of a critical point v of w such that
w(v) . w(u ). By Theorem 3,X̃

u(t) 5=H*(v(t))

is a nontrivial T-periodic solution of (9). h
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