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Abstract. Using the Szulkin's variant of Mountain Pass Theorem, we prove the existence of
nontrivia orbits with prescribed period for autonomous Hamiltonian systems in infinite dimen-
sional Hilbert spaces.
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1. Introduction

In Mawhin and Willem (1989), the authors combining the dual least action principle
and the classical variant of mountain pass theorem, have proved the existence of
nontrivial periodic solutions for the autonomous Hamiltonian system

Ju(t) + VH(u(t)) = 0 (1)

where H € CY(R*, R) is strictly convex, H(0) = 0,VH(0) =0 and J: R*™ . R™" is
symplectic matrix. More specifically, Jean Mawhin and Michel Willem have proved
the following result:

THEOREM (see Mawhin and Willem (1989), Theorem 4.11). If there exists q > 2,
a >0, such that, for every u€ R?", one has

qH(u) < (VH(u), u)
and
H(U) < afjul*,

then, for each T >0, (1) has a nontrivial T-periodic solution.

This theorem was first proved by Rabinowitz (1978) by a direct minimax

* This paper is dedicated to the memory of Professor PD. Panagiotopoulos.
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approach and without the convexity assumption. The proof given in Mawhin and
Willem (1989) is due to Ekeland (1979).
In this paper we will consider the following problem
Lu(t) = VH(u(t)) , (2

where A:D(A)C X — X and —A generates a C,-semigroup e * on the infinite
dimensional Hilbert space X and e " is compact and

5 q A'p—p
A:D(H)CX - X, ﬂ<>=< ) 3
() o) =Uag+q (3)
If we will introduce the operator
& D() CL?(0, T; X) - L0, T; X) (4)

where

D(s#) ={u€L?(0, T; X):u(0) = u(T), i ELO, T; X)}
defined by

(SU)(t) = fu(t), for dl te[0,T],

follows that .
— o islinear, densely defined closed operator with closed range R(«/) (see Barbu
(1996));
— o ":R(A) - L0, T; X) is linear and compact (see Barbu (1996)).
We will also assume that H € Cl()~(, R) is uniformly convex such that H(fx) = O,
VH(6;) = 65 and exists
a >0 such that, for every u€ X, one has

2H(U) < (VH(u), u) (5)
and

- 1
Hu<alulz, Il <5, (6)

In this case, we can prove that the corresponding dual action defined by

V) = fo H* (v(t)) dt—%(vgflv, V2015

is differentiable on R(£¢). Because we do not know if the dual action is continuously
differentiable, we cannot apply the classical variant of mountain pass theorem for
obtaining a critical point for ¢. This is the reason for which we will write
¢ =@+ @, where ¢, (v) = — 1 J7 (o V() V(D)5 dt, @,(v) = f5 H*(v(t)) o, and
we will prove that ¢, is continuously differentiable and ¢, is convex and
differentiable. Using the Szulkin’s variant of mountain pass theorem (see Szulkin
(1986)), we find the critical point for ¢.
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2. The main result

THEOREM 1. Let X be an infinite dimensional Hilbert space )~( XX X, and
Hec! (X R) is uniformly convex such that H(6y) = O, VH(63) = 6. If there exists
a >0, such that, for every ue X, one has

2H(u) < (VH(u), u) (7
and

1
HW<alulz, I« <5, (8)

then, for each T >0
SAu(t) = VH(u(t)) 9)

has a nontrivial T-periodic solution.

Proving Theorem 1, requires several definitions and preliminary results.

3. The preliminary results

We introduce some functional spaces. Let [0, T] be afixed real interval (0<T <)
and let X be a Hilbert space. We introduce the Hilbert space X = X X X with the
natural inner product

(u, V>>”< = <q1’ q2>x + <p1’ p2>x , Yu=(q,, p), V=(Ps Py) E)N( )

and we denote by L"(0, T; )~() the space of al (classes of) strongly measurable

functions u: [0, T] - X such that [ [Ju(t)|%dt <o for l<p<e, We denote

by W“’(X) {u:[0,T] > X:u UeLPOT;X)} and by W;°(X)={ue
WEP(X) 1[5 u(t) dt = 6}. The norm over W:P(X) is defined by

T T i
ol = ([ 13 o+ [ o o)

and

T 1
fllo=( [ Iz ct)e, Jul = max Jutls.

It is necessary to recall the infinite dimensional variants of some very well known
inequalities (for proofs and details see, Dlnca and Pasca):

@ Ifu ewl p(X) then [Jul.. < (T_» + Tq)Hu”Wl » where 2 +1 =1
(b) If ue Wr"(X) then |ul.. <Tq||u||Lp (Sobolev mequallty)



68 GEORGE DINCA AND DANIEL PASCA

3.1. FENCHEL TRANSFORM AND THE DIFFERENTIABILITY OF CONVEX FUNCTIONALS

We recall the basic tool about the Fenchel transform and the differentiability of
convex functionals. Let X be a real Banach space and X* its dual.

DEFINITION 1. Let F:X o (—w,] be a proper functional. Then
F* : X* o (—o, ] given by
F*(x*) =sup {(xX*, X)». x — F(¥)}, Vx*EX*
xeX

is called the Fenchel transform of F.

DEFINITION 2. A functional F : X - (—o0, 9] is called uniformly convex if
AF() + (1= MF(y) — F(x+ (1= )y) =y A1 = Dlx - vl (10)

Vx, yEdomF, VA€E[O0,1] and there y*>0.

DEFINITION 3. Given the proper convex functional F : X - (—o, o], the subdif-

ferential of such a function is the mapping dF : X — 2°" given by

[0 X & domF
IR = XEX* F(Y) —F)=(X* Yy — Xy x» VYEX}; xEdomF .

PROPOSITION 1. If F:X - (—%, %] is proper and convex functional, then it
follows:
1) x* € 9F(X) = F(X) + F(x*) = (X*, X}y« x
2) x* € 0F(X) 0 7x € 9F*(x*)
3) Moreover, if F is lower semicontinuous then [x* € dF(X) = X € dF*(x*)].
(We denoted with 7 the canonical injection of X in X**.)

PROPOSITION 2. Let F : X - (—=, ] be a convex, proper and lower semicon-
tinuous such that

o
~B=FE) =g M+
with « >0, q>1, =0, y =0. Then, if x* € oF(x) it follows:

P1
afq—HX*

p

B < (X*, Xxsx tB+y
and

P _
“X* xx S {paq(”XHx +B8+vy)+ l}q 1-

PROPOSITION 3. Let X be a reflexive Banach space, F : X - (—o0, ] is proper,
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lower semicontinuous and uniformly convex such that F(X> - o when x|y — .
Then F* € C*(X*, R) and F* is bounded to below.

PROPOSITION 4. If F: X - R is convex and differentiable at x, then oF(x) =
{VF()}-

The proofs of the following results is given in Dinca and Pasca. When X is finite
dimensiona the proofs was given in Mawhin and Willem (1989).

THEOREM 2. Let X be a Banach space. Let L : [0, T] X X - R, (t, X)—L(t,X) be
measurable in t for each x € X and continuously differentiable in x for almost every
te[0,T]. If there exists acC(R,,R,), beL*(0,T;R,) such that, for a.e.
te[0, T] and every x € X, one has

|L(t, ¥)| < a(X]|x)b(t)
ID,L(t. )| < a(|Xl[x)b(t)

then the functional ¢ : H3(X) — R defined by ¢(u) = [ L(t, u(t)) dt is differentiable
on H3(X) and

<go’(u),v)=J'0 (D, L(t, ut)), v(t))x- x dt

THEOREM 3. Let X be a Hilbert space, X=X x X, and H : [0, T] X X - R such
that (t, uy—H(t,u) be measurable in t for each uEeX, uniformly convex and
continuously differentiable in u for almost everyt € [0, T]. Let A: D(A)C X —» X an
operator like in Introduction. Assume that there exists « >0, 6 >0, B, v &€
L0, T; R, ), such that, for all ue X and ae te [0, T], one has

2
%—ﬁ(t)&H(t, u) < a Ju ”X+ y(t) .
Then, the dual action ¢(v) = [§ [H*(t, v(t)) — 3(s/ "v(t), v(t))x] dt is differentiable
on R(«#) and, if vER(s) is a critical point of ¢, function u defined by
u(t) = VH*(t, v(t)) satisfies

o

Lu(t) =VH(, ut)), u(0)=u(T).
3.2. THE SZULKIN'S RESULT

In Szulkin (1986), the author introduces the following framework:

Let X be a real Banach space and | a function on X satisfying the following
hypothesis:

(H) 1 =® + ¢, where ® € C*(X,R) and ¢ : X — (—, =] is convex, proper and
lower semicontinuous.
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DEFINITION 4. A point u € X is said to be a critica point of | if u & dom ¢ and if
it satisfies the inegquality

(®'(W),V— Uy x + (V) — p(u)=0, VYveEX.

A number ¢ €R such that | ~*(c) contains a critical point will be called a critical
value.

DEFINITION 5. We say that | satisfies the Palais-Smale condition (in short (PS)) if
each sequence (u,) in X such that I (u,) - c€R and

<q>’(un)! V= un>X*,X + lp(V) - ¢(un) = <Zn’ A\ l"In>X’*,X VV S X ’

where z, - 6,., possesses a convergent subsequence.

Under the conditions described above, Szulkin prove (see Szulkin (1986),
Theorem 3.2):

THEOREM 4 (Mountain Pass Theorem). Supposethat | : X - (—o°, ] is a function
satisfying (H), (PS) and
i) 1(6x) = 0 and there exist 6, p >0 such that I|HB/) = §,
i) 1(€) <0 for some eZ B,.
Then | has a critical value c= 6 which may be characterized by
c=inf sup I(f(t)),

ferl tg[o0,1]

where T = {f € C([0, 1], X) : f(0) = 6, f(1) = e}

4, Proof of Theorem 1

The proof of Theorem 1 will be a combination of the dual least action principle and
the mountain pass theorem, and requires several preliminary lemmas. We will follow
the ideas from finite dimensional case studied in Mawhin and Willem (1989).

LEMMA 1. If

v :Htﬁgjgl W, m :Huiur;f:l HW (11)
then

lule =10 H@=MJuZ,  fuls=10 HE) = miul? 1)

Proof. First of al, we will see that M <o and m> 0. From (8) follow that for
|ullx, = 1 we have H(u) < « and therefore M = sup;,. _, H(U) < a <. Now we will
prove that m> 0.

From Definition 2 we have
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AH(U) + (1= DHV) — H(Au + (1 — A)v) = A1 — D)y u — V|3

Yu, VEX, VAE(0,1). For v=26; and u€ X with |jug =1, because H(6) =0
follow

H(Au)
A

Since H € C*(X, R) and VH(6x) = 65, we have

H(v + h) — H(v) — (VH(v), h)
T Ih -

H(u) — =(1- \)y2. (13)

(14)

If we take in (14) h=Au, |ul|lg =1, A>0, A - 0, v = 6; we obtain
H(Aw) _

A-0A>0 A
Therefore, from (13) H(u)=y>>0, Vu,
m> 0.
For will prove (12), we define f : R - R, f(s) = H(sv) for some fixed v EX.
Assumption (7) implies that sf’(s) = 2f(s). Thus, if s=1, f(s)=sf(1) i.e. H(sv) =
S?H(v). If |lull <1 this implies

“(@) = lulz *H(W)

0.

ullx =1 which implies inf,._, H(u) =

and if ||jul|g = 1, this implies

u u
H(u) = H<||u||>~< m) > ||u||§H<m> . .
LEMMA 2. The function H* is continuously differentiable on X and, if
LA M s B, g
we have m* >0 and
2H* (v) = (VH* (v), V) 5
V][ <10 H*(v) = m*||v||>2~( I~
IVl =10 H*(v) < M*|v|3 o
H*(v) = a*|Ivlfx 5

for all v EX.

Proof. First of al, we will prove that m* >0 and M* <o, Relation (8) implies
relation (18), and therefore m* > 0.

By contradiction we suppose that M* = sup,._, H*(v) = . It follows that there
exists a sequence (v,), |V, ||x = 1 such that H*(v,) - . Since H is uniformly convex
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and, by (12), such that HW _, « as ||l — o, Proposition 3 implies that H* €

Jull

Cl()~(, R). Now it follows from Proposition 1 and Proposition 4 that for fixed v &€ X
exists a unique u € X such that

vV =VH(U) = u=VH*{V) = H*(v) = (v, u) — H(u) . (19)
Therefore exist a sequence (u,,) € X such that

H*(V,) = (Vo Uy = H(U,) s v lx = 1.
Follows that

H*(v,) < [lugllx = H(uy)
and therefore

lufl = Hug) - <. (20)

From uniformly convexity of H, for A=1, v =6 we have
1 a2 <ﬁ)
HUuy) =5 v 7ulE +2H(5
which implies
l 2 2 un
lualle = Hup) = lunlx — 5 ¥l - 2H(3) (21)
From (20) and (21) result

H(Z) - . (22)

Relation (22) is in contradiction with the fact that in our assumptions, the
Hamiltonian H is bounded to below.
From (19), assumption (7) implies that

H*(v) = (v, u) — H(u) 2(1 — %)(v, uy = % (v, VH*(v)) .

Like in the proof of Lemma 1, (15) implies (16) and (17). O

REMARK 1. We know that the function H* is convex but we do not know that H*
is uniformly convex. In the proof of Lemma 2 it is not necessary that H* be
uniformly convex.

REMARK 2. If we denote supy, .-, H*(v) = M7 and proceed like in the proof of
Lemma 2 it follows that M% < . Since, by (17), H*(v) < max(M* + M%)(1 + |v[[%)
for all v & X. Proposition 2 and Theorem 2 imply that the dual action defined by

o) = [ [ H® - 5 Vo v | a

0
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is differentiable on R(&f).

LEMMA 3. There exists C > 0 such that, for each v & R(£¢) one has

g
J| ¢t V0, Ot = Ol

Proof. Obviously

T T
J| v, vpe = | et I ot = OV O

LEMMA 4. Every sequence (v,) in R(/) C L*(0, T; X) such that (¢(v;)) is bounded
and ¢'(v;) - 02015y CONtains a convergent subsequence.
Proof. Theorem 2 imply that the dual action ¢ is differentiable and

(@' (V), W) = (VH*(v(-)) = 'V, W) 2015, -

The Riesz representation theorem imply the existence of a sequence (f;) in
L%(0, T; X) such that [fll.2 -~ 0asj - o and

VH* (v;(+)) — a vi=f, (. Wz0r5 = Guzori: (23)

for al we R(&). Using Lemma 3, (8) and (18) we obtain

o) = MO -5 [ (0

1/1 3
e ) .

Because (¢(v;)) is bounded it follows (v;) is bounded in L0, T; X) Going if
necessery to asubﬁquence we can assume because A s compact, that v, =V in
L0, T; X), o v -»winlL (0 T;X). But &/  is selfadjoint, therefore weakly
closed, and we have w=. 'v. From (23) we have

VA () = Y -,
and by duality
V= VH(S V() +()) (24)

Now, assumption (8) and Proposition 2 imply that VH maps continuously
L?(0, T; X) into L*(0, T; X), so that

Vv, =VH( v, (-) + () - VH( V). O

Proof of Theorem 1
1) Now we can write the dual action on the following form:
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¢=¢ +¢, Where
l T . T
a\V)=-3 JO (o V() v(t)x dt,  @,(v) = fo H*(v(t)) dt

with ¢, differentiable and ¢, convex and differentiable (see Remark 2). By Theorem
2 it follows

(i) w =~ (v, w) et

By Holder's inequality it follows (@] (v), w)| << | [VI_2llwl|, - which implies the
continuity of ¢; and hence ¢ satisfies (H). Using Proposition 4, it is obvious that,
for ¢, the definition of critical point (Definition 4) as well as the (PS) condition
(Definition 5) coincide with the usual ones. We shall apply Theorem 4 to ¢. By
Lemma 4, ¢ satisfies the (PS) condition for every cER.

2) Since

o= | [ Hr) 3 v
He )= VB and ot Y <5
we obtain
1/1 AT
o) >3 (5~ It )M arso > x(@ars) = 0
it 0=Vl <p
e(V)>6>0 if |Vl 2075 =p-
3) Let

2k . .2k ~
v, (t) = w, (t) where w,(t) = (cos% t)c - (s n ?77 t> Jc

and k€ Z, €=(c,c), cEDA), [clly=-%. Then, [W.20r.x, = VT for al keZ
and

e(v,) = LT H* (v, () dt + kar .

By
H* (v) < max(M*, M3)(1+ [lv][*) ,
we obtain
o(v,) < max(M*, M¥)T(L + |||)) + k.

Obviously we can choose k € Z such that ¢(v,) <0 and such that [V, 2 1.5, > p.
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4) Theorem 4 implies the existence of a critica point v of ¢ such that
o(V) > ¢(fz). By Theorem 3,

u(t) = VH*(v(t)

isanontrivial T-periodic solution of (9). O
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